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Can Particle Creation by a Black Hole be Described 
in Terms of More Familiar Laboratory Processes? 
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Particle creation by a black hole is described in terms of temperature corrections 
to the Casimir effect. The results of Levin, Polevoy, and Ritov for spectral and 
total Poynting vector for a fluctuating electromagnetic field in a plane vacuum 
gap between two arbitrary media with different temperatures in flat spacetime 
are applied to clarify the situation that exists between the horizon ofa nonrotating 
black hole and spatial infinity. This helps to reveal the mechanism of particle 
creation. The Hawking radiation is "born" inside the "bell" formed by a potential 
barrier of a black hole in all the region [2M, oe]. Its blackbody spectrum is due 
to the interaction of field fluctuations with the surface of the "bell." The particles 
between the "walls" are virtual ones. They can become real after passing through 
the [3M, oe] tail, appearing to an observer at future infinity J+ as "real" ones. 
The arguments for and against the present standpoint are discussed. 

In  previous papers (Nugayev,  1982, 1985; Nugayev and  Bashkov, 1979) 
a program of reducing particle creation by a black hole to q u a n t u m  field 

effects in flat space-t ime was initiated. The program is based on the fact 
that the gravi ta t ional  field of a black hole creates an effective potent ia l  

barrier  that is penet rable  for h igh-frequency waves and  impenet rab le  for 
waves with low frequency.  The barr ier  is so well-localized near  r = 1.5Rg 
(Rg = - 2  G M / c  2) that for the study of wave propaga t ion  we can consider  
the regions quite near  the horizon and  far away from it as "flat." All the 
scattering takes place in the small region near  r = 1.5Rg. Cons idera t ion  of 
the barrier  peak (r  = 1.5Rg) as a surface of a reflecting sphere permits  us 
to apply to a black hole the results of  various Casimir-effect calculations.  
It appeared  (Nugayev and  Bashkov, 1979) that the flow of negative Casimir  
energy should  cause the area of the horizon to shrink at a rate consistent  
with the energy flux observed at future infinity J+. But the model  appeared  
to be too primitive, provid ing  only quali tat ive agreement  with Hawking ' s  

(1975) results. 
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Hence, a second stage of the program had to be carried out (Nugayev, 
1982). It consisted in the creation of a more sophisticated model capable 
of  demonstrating that the two properties of  a black hole- - the  horizon and 
the potential barr ier-- together  are necessary and sufficient to compel the 
hole to produce thermal radiation at a temperature that exactly coincides 
with the result of  Hawking. This was done by reducing the evaporation 
effect to that of  particle creation by (nonuniformly) accelerated mirrors. 

But even the second model remained too simple to mimic some impor- 
tant features of  the evaporation process, since the vacuum stress-tensor 
diverged in the reference frame of a freely falling observer as r ~ 2M. The 
pathology of the second model is due to the assumption of ideal conductivity, 
which is obviously not the case for the spherical potential barrier of  a 
nonrotating black hole. So, a third stage of the program was carried out 
(Nugayev, 1985) and the finite conductivity of  the barrier was taken into 
account. It make it possible to eliminate the pathology and to reveal 
simultaneously that the blackbody radiation should be "created"  in the 
whole region [3M, ~] .  

However, even the third model is able to describe the creation domain 
only, but not the mechanism of black hole evaporation or why the radiation 
at J*  is the blackbody radiation. The cause of the difficulty is obvious: the 
third model ignores the thickness of  the potential barrier. In our earlier 
work the barrier was approximated by a thin shell. However, Fabbri (1975) 
demonstrated that there are two branches of  turning points for a nonrotating 
black hole potential barrier: 

r I = - -  - -  COS -- 
to 3 

r 2 =--- - -  COS - -  
to 3 

where ~7 = arccos{-3toM[3/l(1 + 1)]1/2} and arccos denotes the principal 
value of the inverse trigonometric function, so that 2M <- rl -< r2. For inst- 
ance, each (to, l) partial low-frequency wave has two turning points: 

r 4to2M 2 (to4M4~ l 
r l = 2 M L I + ~ + O  \ 14 /J  

[1( I+1)]1 /2[  (~7--M) ] (i) 
r 2 -  M 1 + O  

t o  

where O(x) denotes a quantity of order x. 
Consequently, for investigating the interaction of virtual particles with 

the surface of the potential barrier, the latter should be represented by two 
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conducting concentric spheres. One of the shells is situated near the horizon, 
while the other is far from it. Each sphere is made of an ideal conductor. 
The aim of this paper is to give a description of the e v a p o r a t i o n  m e c h a n i s m  

on the basis of this model. 
Casimir (1948) demonstrated that the vacuum fluctuations of the elec- 

tromagnetic field give rise to an attractive force between conducting parallel 
plates. When one quantizes the field subject to the appropriate boundary 
conditions on the plates and calculates the vacuum energy with a wavelength 
cutoff, one finds that as the separation between the plates changes, the 
vacuum energy per unit area changes by a finite, cutoff-independent amount. 
Thus, in spite of the formal divergence of vacuum energy, a change in the 
configuration of the system causes a finite shift in the energy of the vacuum 
state. If the vacuum energy of the system for infinite separation is set equal 
to zero, then the energy of the plates for any finite separation is described 
by the expression 

A E = - 7r 2 h c A /  7 2 0 d  3 (1) 

Here A denotes the area of each plate and d is the finite separation between 
them. 

Note that the Casimir energy is o f  p u r e  v a c u u m  origin. No real particles 
are involved, only virtual ones. But the experiments of Derjagin, Sparnaay, 
van Silfhout, Tabor, and Winterton (see Boyer, 1970, and references cited 
therein) encourage us to take it seriously. 

For the electromagnetic field the stress tensor of the vacuum between 
the plates was calculated by De Witt (1975): 

I z u  / x p  /x~, 
( T )vac  = T(_) + T(+) 

7-i.2hc 2 3A4hc 2 
diag(-1,  1, 1 ,3 )+  7r-------T--diag(1,�89189 (2) 

- -  7 2 0 d  ~ 

where A is a frequency cutoff that cuts off the high-frequency waves. (The 
expression for the ;r stress tensor of a massless scalar field differs 
from that for the electromagnetic field only by the factor �89 

The work of  Boyer (1968, 1970) offers a method for calculating the 
vacuum energy of an uncharged sphere made from a physically realizable 
conductor. Let us approximate a sphere of radius d by two parallel plates 
of area rrd 2 at a distance d apart. With the help of (1) and (2) we obtain 

A E = - 7r 2 h c / 7 2 0 d  + 3 hcA4d3/'rr (3) 

where the second part is a correction for the finite conductivity of  the plates. 
The approximation is justified by the exact calculations of Boyer (1968) 
and Davies (1972) performed independently. Having computed the vacuum 
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energy of a sphere with ideal conductivitiy, they demonstrated that AE 
exactly coincides in magnitude with the cutoff-independent part of (3). Only 
the sign changes. So, for finite conductivity 

A E  = zr 3 h c / 7 2 0 d  - 3 hcA4d3/ 7r (4) 

All the studies of massless fields in various metallic cavities, initiated 
by Boyer and reconsidered by several groups, have focused on the integrated 
total energy. Olaussen and Ravndal (1981) seem to have been among the 
first to undertake the more detailed and laborious analysis of local densities 
for spherical cases. 

The energy density is given by 

4 2 ~-0.005 1 + (5a) ( a l :u ( r ) :~~)~-~  15,r/.2~3 35~2t~ ~ 

where 8 = [1 - ( r / d ) 2 ] .  

Near the surface of the sphere where r ~ d 

1 1 
(121: u (r) :f~) ~-----~ (3--~e3) (5b) 

where e = 1 - r /d .  So, the (normal ordered) energy density is found to be 
negative everywhere inside the cavity. In that respect a spherical cavity is 
not qualitatively different from the parallel plate or box geometries. The 
unexpected result, first found by Boyer, that the total Casimir effect for a 
spherical shell actually leads to an increase in energy, only occurs because 
the energy density outside the shell is positive enough to overcompensate 
the negative energy inside. 

The stresses induced in the Minkowski vacuum by an infinite plane 
conductor that is uniformly accelerated normal to itself were investigated 
by Candelas and Deutsch (see Sciama et al., 1981). The solution of the 
boundary problem was facilitated by the introduction of accelerated 
(Rindler) coordinates s c and r: 

t = ~ sh r, x = ~ ch r, ds 2 = ~2 dr  2 + d~2 + dy2 + dz 2 

In this system the curves ~ = const, y = const, z = const are worldlines of 
constant proper acceleration ~-1. The surface ~ = b---const represents the 
trajectory of the barrier. 

The regularized vacuum expectation value (T~) = (0[ T~ [0) of the stress- 
energy tensor far from the conductor ( ~ / b  ~ e~) for a scalar field was found 
to be 

1 
I ~ d~176 diag(-1,  �89 �89 �89 (6a) 

(T~) 27r~ :4 do e 2~'~ 1 
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Thus, (T~) is reduced below zero by an amount corresponding to blackbody 
radiation at a temperature 

T = (27r~:)-' (6b) 

This asymptotic form is independent of the acceleration of the barrier in 
the sense that it depends only on the acceleration of the local Killing 
trajectory. 

Equivalently, far from the conductor 

(T~9~) = [ -  (4807r2~:4) -1 - (144~ :4 ln3 ~:/b) -~ ] d iag( -  1, '~, g,l 5,1~ 

-I- o r ( ~  3 ln4~:/b) -1] (6c) 

{ T ~ )  = [-(4807r2~:4) -1 + (288~ :4 ln3~:/b) -1 ] d iag( -  1, ~-3, !3, _h3j 

+ O[(~ :3 ln4se/b) -1] (6d) 

where ( T ~ )  and ( T ~ )  denote the values of (T~) for the Dirichlet and 
Neumann cases, respectively. 

The results corresponding to temperature corrections to the Casimir 
effect (Fiertz, Mehra, Hargreaves, Brown, Maclay, et al.) were generalized 
by Tadaki and Takagi (1986) for two parallel, infinite plane boundaries in 
four-dimensional Minkowski spacetime. This system has two special direc- 
tions (t, z) because of  the presence of the boundaries and the heat bath. 
According to the symmetry of the system, the conservation law, and the 
tracelessness, (T~)  has the following form: 

(T~)  = A diag(-1,  1, 1, -3)  + B diag(3, 1, 1, 1) + C diag(1, 0, 0, 1) 

+ F(z) diag(2, 1, 1, 0) (7a) 

It is remarkable that (T33)-(T=) is uniform, though the other diagonal 
components of (T,~) are possibly z-dependent. The first term in (7) rep- 
resents the zero-temperature term and the second the Stefan-Boltzmann 
term. For a conformally coupled massless scalar field 

,rr2hc 7-i-2k4T 4 
A B= 

1440d 4' 90h3c 3 

hc f3  T kd T)} (7b) 

1 1 kd 
- ~ f ( T ) + -~ -~c Tg ' ( T, z ) ] ~4 ] F(z) L 

where 

1  2kdr/ c) 4 

f (  T) = 4~r2 n=l m=l [m2 +4n2(kdT/ hc)2] 2 
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d f(T)  
if(T) - 

dT 

(2dkT/  hc) 4 
g(T,z)=-8zr21 ,=-~o~ ~=,~ [m2+a(z/d+n)2(kdT/hc)2] z 

g'(T,  z) = 0__gg 
OT 

In the low-temperature limit (Td << 1), (T.~) has a sinusoidal z depen- 
dence: 

7r2hC 
A = - -  B = 0  

1440d 4' 

~kT e-~h~/kdT + O(T2e-2~/T) 
C = 5~- ;  

(a) 

- d  --Se - 6  c~ d +2hc \ l+hcc;/  

Here the Stefan-Boltzmann term is canceled out. The temperature 
correction is exponentially small, because the basis modes have an energy 
gap. 

In the high-temperature limit (Td >> 1), (T,v) is dominated by the 
Stefan-Boltzmann value everywhere not close to the boundary. The behavior 
near the boundary may be seen by considering the single boundary problem. 
In the limit d ~ oe the result is 

,rr2k4 r 4 
A = 0 ,  B -  90h3c3 , C =0  

(9) 
77- 2 T4 k 4 

F ( z )  12h3c3 (2Z -1 coth Z cosec 2 Z - Z -2 c o s e c  2 Z - Z -3 coth Z) 

where Z = 2,n-Tzk/hc. 

The thermal average deviates from the Stefan-Boltzmann value near 
the boundary (Z<< 1) due to the T 4 term of F(z): 

F(z ) -  "n'2T4k44 [ 9 0 h 3 c  33 1 -72Z2-k224-kO(Z6)  1 3 5  (10) 

This expansion coincides with the result obtained in Kennedy et al. 
(1980). The calculations for the electromagnetic field are almost the same. 
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Finally, Levin et al. (1980) obtained,  with the help of  the generalized 
Kirchhoff  law, 2 the expressions for the spectral and complete  Poynting 
vector  o f  fluctuating electromagnetic  field in a vacuum cavity formed by 
infinite, flat parallel conductors  (el, /Xl) and (Ca, P,z) with temperatures  T~ 
and T2 (/'1 > 1"2). The Poynting vector is given by 

fo 12fo  P = p(o)) do) = - -  ( I I 1 - I I2 )Mdo)  (11) 
"/7" 

where 

~o) o) 
H i -  i = 1 , 2 ,  k =  

exp( tio) / KTi)  - 1' c 

In vacuum (el = e2 =/xl  =/x2 =- h = 1) for  infinite separat ion (d ~ oo) one gets 

M (oo) = k2 /8  (12) 

and under  d = O, M(O) = k2/4 

P(0)  = CrsB ( T 4 - T 4) (13) 

Thus, though each conduc tor  is in equil ibrium with radiation,  each is 
so at different temperatures ,  and the whole system is in the nonequi l ibr ium 
state. Under  these condit ions a flow of  the fluctuating electromagnetic  field 
from T1 to T2 (7"1 > 7"2) dominates  inside the cavity over the flow from T2 
to T1. 

Consider  a particle at rest in the gravitational field of  a Schwarzschild 
black hole. Its four-velocity is 

u ~ ~- d x ~ / d z  = ( ( 1 - 2 M / r )  -1/2, O, O, O) 

The proper  accelerat ion of  the particle is 

,~ Du ~ du ~' 
dr dz +F~ut~u~=F'3u 'u~ 

(a,/3, 3,= t, r, 0, ~). The only nonvanishing componen t  of  F ,  is FT,-- 
( M / r 2 ) ( 1 - 2 M / r ) .  Hence,  a ~ = (0, M / r  2, 0, 0), 

]al = (g~t~a ~a ~)1/2 = (1 - 2 M / r ) - l / 2 M / r  2 (14) 

2Levin et al. (1980) point out that the generalized Kirchhoff law contains an expression for 
the oscillator's average energy | T). Nevertheless, zero oscillations have no impact on the " 
energy flow and are discarded here: II 1 = @(w, T ) - h w / 2 .  Of course, the energy of the 
equilibrium fluctuating electromagnetic field is 

E =~ hw~/2+Y" hw~/exp(fiw~/KT) -1 
a 

where w~ are the eigenfrequencies, depending on d. 
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A stationary distant observer will measure 

b~DU~d.r ( 2~)1/2  = - - = a  s 1 -  
d'r dt 

(15) [bl-~ (g~ob~b~) '/2 = M / r  2 

Consequently, the peak of the potential barrier (localized in the vicinity 
of r = 3M) has a nonzero proper acceleration ~ ( 3 , ~ M )  -~. 

According to Fabbri (1975), who studied the scattering and absorption 
of electromagnetic waves by a nonrotating black hole, when the frequency 
oJ of radiation is smaller than the critical frequency we given by 

we = (2/27)1/2M - '  (16) 

turning points exist for all partial waves, that is, for all values of L When 
r > wc, turning points exist only for high - l  waves; more precisely, they 
exist if l is greater than the critical parameter l~ given by 

Ic(lc + 1) = 27roZM 2 (17) 

At high frequencies (w >>we), for /<< lc, the waves pass above the 
potential barrier completely unaffected. When l is slightly greater than l,., 
the turning points are approximately given by 

27t.o2M2~ 1/2 ] 

In the case l < l~ the zeros of the wave number are given by 

f~,2=3M 1 : ~  1 27w2M2 J j (19) 

So, for o) > ~oc the transmission coefficient of the barrier is 

T~=O at l> lc  
(20) 

T t= l  at l< lc  

For o)<< wc real turning points exist for all partial waves [Eq. (i)]: 

(1+ 1)!(1- 1)!]2 (2wM) z'+2 (21) 
T,=4 (21)!(21+1)!!3 

That is why the situation that only low-frequency waves can escape 
from the region formed by the Casimir plates with reflecting properties is 
nicely mimicked by the expressions (i). This conclusion is also justified by 
the calculations of Sanchez (1978): the reflecting properties of the potential 
barrier provide that Hawking emission is only significant in the frequency 
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range 0 - w  < 1/M. Consequently, the potential barrier of a nonrotating 
black hole should be approximated by two concentric shells with the first 
in the vicinity of the horizon, 

r = r l = 2 M + 4 w 2 M 3 / l ( l + l ) - + 2 M ,  oJ~O 

and the second far away from it, 

r = r 2 - ~ l ( l + l ) l / 2 / o ~ ,  w-~O 

The success of the approximation of the Casimir sphere by two parallel 
plates [equations (1)-(4)] permits us to replace each spherical conductor 
by two plane conductors. 

Consider an observer resting on the surface of one such conductor 
(r = r0) in the gravitational field of a Schwarzchild black hole. According to 
the principle of equivalence, this observer is equivalent to an observer 
accelerated in Minkowski spacetime with proper acceleration b -~= 
( 1 - 2 M / r o ) - l / 2 M / r ~ .  However, as is well known (see, for example, Sciama 
et aL, 1981, and the references cited therein), an observer that is accelerated 
in Minkowski space time with a proper acceleration b -1 finds himself in a 
thermal bath with temperature T = b-l/2~rck. An observer accelerated with 
the surface of the wall should find the thermal radiation in equilibrium with 
the wall at the same temperature. Hence, an observer resting on the surface 
of a conductor in the gravitational field of a Schwarzschild black hole would 
discover thermal radiation in equilibrium with a conductor at a temperature 

M 
T - r2o(1 - 2M/ro)1/22 ~rck (22) 

Consequently, the interaction of the radiation with the surface of the potential 
barrier can be described in terms of temperature corrections to the Casimir effect. 

First, the temperature 7"1 of a conductor in the vicinity of the horizon 
is considerably higher than that of a conductor far from it. So, though each 
conductor is in equilibrium with radiation, the whole system is in the 
nonequilibrium state (7"1> T2) and a flow of the fluctuating scalar (or 
electromagnetic) field establishes itself in the region [rl ,  r2]. The flow is 
directed from the horizon to spatial infinity. 

An observer who sits at rest (r = ro) near the horizon will discover a 
flow of thermal radiation with a temperature 

1 
_ _M 1 _ 2 M  lj2 

A distant stationary observer at future infinity J+ will find that the tem- 
perature of radiation in the vicinity of the horizon is T=(1/2~r)M/r~.  
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Indeed, the gravitational blue shift of the photon (ratio of observed energy 
htoo to energy hto emitted at J+) is 

too/to = (goo) -1/2 = (1 - 2M/ro )  -'/2 

But to /T  = const along the light ray (see Misner et al. 1973). That is why 
T, = T ( 1 - 2 M / r o )  -1/2. 

According to (15), M/ rg  is the magnitude of the acceleration (measured 
by an observer at J+) of a particle at rest in the gravitational field of a 
Schwarzschild black hole. It tends (see Bardeen et al. 1973) to the so-called 
"surface gravity" x when the particle is infinitesimally close to the event 
horizon. For a Schwarzschild black hole, ~ = (4M) -1 (c = G = 1). So, the 
temperature of the radiation near the horizon is T1 = ~/2~- according to an 
observer at J+. Since the temperature T2 of an observer far from the horizon 
is negligible, the Poynting vector [see equations (11) and (12)] is 

P = J ?  p(w) dto 

1Io  - a (H1-  H2)Mdto 
-/'r 

1 ~oo htoM(oo) doo 

- Ir2 Jo e x p ( h t o / k T 1 ) - I  

1 Io ~ hto3dto 
- 7r2 e x p ( h t o / k r O  - 1 

h 1 fo ~ tog dtoo (23) 
- ~rZe 2 ( 1 - 2 M / r )  2 exp(htoo2~r/k~) - 1 

Equation (23) exactly coincides with the results of the various studies of 
Hawking radiation made on the basis of usual quantum field theory in 
curved spacetimes. It should be pointed out that zero oscillations have no 
direct impact on the energy flow (23). But, of course, they influence it 
through the expression for the energy of  the equilibrium fluctuating elec- 
tromagnetic field 

E = 2 { h t o J 2  + h to~ / exp (hw~/kT )  - 1} 
o e  

when the eigenfrequencies to~ depend on d. 
Second, to give a more complete description of the vacuum stress tensor 

between the conductors and in the whole [2M, ~ ]  region, we can apply 
(7a)-(7b) with d the "distance" in the accelerated [or Rindler; see Misner 
et al. (1973) for details] frame of reference: d = ~ = (1 - 2M/r )1 /2r2 /M.  But 
the fact that temperature T = T(r)  varies from one point to another hampers 
the direct utilization of the temperature-correction results. Hence, we shall 
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calculate the (T~)va c in the vicinities of r~ and r2 first. In these regions the 
variations of T with distance are small in comparison with those in the 
domain between the conductors. 

The proper acceleration of the r2 barrier is 

where 

A2=( [1(1+1)]-1/2o~ M ) ~  if w ~ 0  

A spherical conductor far from the horizon can be represented by two plane 
conductors with equal temperatures b~l/27r and accelerations b~ -1. To 
describe the region Jr2, ~] ,  the d ~ oo limit of equation (19) should be 
relevant: Td >> 1, and (T~)  is dominated by the Stefan-Boltzmann value 
over all the space: 

~2T4 M 4 
A = 0 ,  C =0,  B =  90 = 1440~-2rS(1-2M/r) 2 (25a) 

To describe the situation near the other side of the r2 barrier, it should be 
noted that the spherical conductor can be exchanged with a pair of fiat 
plates that rest in the Schwarzschild gravitational field. So, taking into 
account equation (2), we obtain 

2 
71" 

(T'~)vao = 1440d4 diag(-1,  1, 1, 3) 

~2M4 
- 1440r8(1 _2M/r) 2 diag(-1, l, 1, 3) (25b) 

Equations (25a)-(25b) are in good qualitative agreement with the exact 
calculations of Frolov and Zel'nikov (1985) obtained by the usual quantum- 
field methods for the Boulware vacuum: 

X 2 M 2 [ ( 2 - 1 . 5  ) �9 
+4606, )  (T.)  14407r2r 6 [ i l - ~  ( - 6 .  ~ o 

1)] 2M +6(36~6~ +6~6, , x=- (26) 
r 

The Boulware vacuum ]B) is defined by requiring that normal modes 
be of positive frequency with respect to the Killing vector O/Ot with respect 
to which the exterior region is static. IB) is relevant (Sciama et al. 1981) to 
the region exterior to a massive body that is only just outside its Schwarzs- 
child radius. The Boulware vacuum corresponds to the familiar concept of 
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empty state at large radii, but is pathological at the horizon since it diverges 
in the reference frame of a freely falling observer. In the region near the 
"nonaccelerated" side of the r2 conductor, equation (25b) corresponds to 
the absence from the vacuum of blackbody radiation with temperature 
T2 = b21/2~r. This means that if thermal radiation were added, the resulting 
state would be indistinguishable, near r2, from the usual Minkowski vacuum. 

~ v  The term, ( T ) v a c  in equation (25a) is positive, which corresponds to the 
presence in the [r2, co] region (near the "accelerated" side of the r2 conduc- 
tor) of the positive virtual radiation. 

When the barrier is made from a real conductor that conducts well 
only at high frequencies, equations (25) should be modified to include the 
correction term (Nugayev, 1985) 

3A4 �9 1 ! 1~ 
(T~V)vao= T~+ T2 = T l + ~ 2  drag(l, 3, 3, 3j 

3,o 4 
5, x) (27) = T1 + 27r2 (1 - 2 M / r )  2 diag(1, �89 1 

where ,oc = (2/27)~/2(1/M) is the cutoff frequency for the absorption of 
massless waves by a nonrotating black hole. The cutoff-dependent part of 
(27) at infinity corresponds to that of the ordinary photon gas. 

The proper acceleration of the rl barrier is 

M ( 2 M  ~--1/2 

b l  1 (2M+A1)2 1 - 2 M + A 1 /  

where A1 = 8M3,o2/l(l + 1). If we exchange the r~ conductor with two plates 
at a distance apart, we can apply equation (2) to describe the situation in 
the [2M, rl] region: 

~ - 2 M 4  
/zv 

( T ) v a t -  1440r8(1 _ 2 M / r ) 2  diag(-1 ,  1, 1, 3) 

3`o~ 1 1 
5, 5, + 2~.2(1 _ 2 M / r )  2 diag(1, 1) (28a) 

Equivalently, to obtain the first part of equation (28a), we can use the 
Td<< 1 limit of equation (8) with d ~ - 4 M ( 1 - 2 M / r ) l / 2 :  

2 2 
7/" 77" 

B = 0 ,  C =0 ,  A - - -  
1440d 4 - 1440(4M)4(1 - 2 M / r )  2 

(28b) 
6 

"/7" 

(Too) ~ - 90(87rM)4(1 _ 2 M / r )  2 
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Equations (28a) and (28b) are justified by the application for [2M, r~] of 
a black hole of  equation (5b) valid near the surface of an ideal spherical 
conductor: 

1 
(•1: u (r) : ]a)  ~ - 7r2d430e 3 

M 4 1 

301r2rS(1-2M/r)  2 e 3 

where e = 1 - ( r / 2 M ) ( 1 - 2 M / r )  ~/2. Again the equations obtained are in 
good agreement with Frolov's equation (26) for the Boulware vacuum. The 
[B) vacuum in [2M, rl] is depressed below zero by an amount corresponding 
to the absence from the vacuum of blackbody radiation at a temperature 
T = 1 /8~ rM(1-  2 M / r ) .  It is this pure virtual Casimir negative energy that 
enables the black hole to contract with nonuniform acceleration. The second 
part of  equation (28a) makes it possible to eliminate the pathology of IB) 
on the horizon. 

To describe the situation near the other side of  r~, in the direction of 
acceleration, we can again apply the Td >> 1 limit of  equation (19) with 
d-+co. Again (T~,~) is dominated by the Stefan-Boltzmann value over all 
the conductor: 

,/7- 2 7 4 ,/7- 2 

A = 0 ,  (7=0 ,  B=-~ 9 0 - 9 0 ( 8 r r M ) 4 ( 1 - 2 M / r )  2 (29) 

The expression (25b) for the "unaccelerated" side of  the barrier can 
be obtained in a way that clearly points out its physical significance. I f  we 
exchange the r2 conductor by two plates at a distance A2(1 - 2 M / r )  1/2 apart, 
the Td << 1 limit of  equation (8) can be used to describe the situation in the 
vicinity of  r2: 

2 2 
77 "/7" 

B = 0 ,  C = 0 ,  A-1440d--4-~1440(l_2M/Aa)2A2 
2 (30) 

77" 
(Too) - 

1440(1 - 2M/A2)A22 

Of course the result is too rough, but it helps to reveal an important  
detail of  the radiation picture between the rl and r2 conductors: any observer 
in the [r~, r2] region sees two intersecting flows of blackbody radiation. The 
dominating flow with T~ = 1/8rrM comes from the rl conductor; the r 2 
conductor results in the second flow, of  negative energy. It comes from the 
surface of  r2 and corresponds to the absence from the vacuum of blackbody 
radiation with 7"2 = (2rrb2)-' ,  according to an observer at J+. An observer 
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at  r = ro i n  [rl, /'2] sees 

L =  

T ~ = m  

87rM(1-2M/ro)  1/2 

1 M 

2~r~ 27rr2o(1-2M/ro) "/2 

since equations (6a)-(6b) guarantee that the asymptotic forms of (T"")vac 
are independent of the acceleration b21 of the barrier in the sense that they 
depend only on the acceleration ~:-1 of the local Killing trajectory. The 
resulting flow 

7r2 4 7r2(1 - x  8) 2M 
(T "~) = ~-~(T1 - T 4) =90(1 _x)2 .  (81rM)4, x - = - - r  (31)" 

in complete agreement with equation (13) for d = 0. 
Equation (31) is also in good qualitative agreement with Page's (1982) 

exact formulas obtained for the Hartle-Hawking vacuum: 

q).2 f v 0 
(T~)H 90(~-~M) 4 ].[1-(4-3x)2x6](B~-46~ 2 

+ 24x6(3 ~ 8  ~ + ~18.) (32) 

The Hartle-Hawking vacuum ]H) is defined by taking incoming modes 
to be of positive frequency with respect to the null coordinate on the future 
horizon, and outgoing modes to be of positive frequency with respect to 
the null coordinate on the past horizon. IH) corresponds to a black hole in 
equilibrium with an infinite sea of blackbody radiation. This equilibrium 
is unstable (see Sciama et al. 1981) since the temperature of the hole varies 
inversely with its mass. So if, in virtue of a fluctuation, the black hole were 
to absorb more radiation than it emitted, its mass would increase and hence 
its temperature would fall. It would absorb more radiation, cool further, 
etc. On the other hand, if the black hole were initially to emit more radiation 
than it absorbed, then its temperature would rise. It would radiate more 
rapidly. So in either case the system as a whole tends to evolve away from 
equilibrium. However, the stability of the equilibrium can be restored by 
enclosing the black hole in a suitably small box (Gibbons and Perry, 1978), 
as we have done already. 

Thus, all the thermal radiation is "born" in all the "region" [rl, r2] 
between the conductors. Its blackbody spectrum is due to the interaction 
of scalar, electromagnetic, etc., fluctuations with the conductor surfaces. 
The dominating flow is directed from rl to r2 (T l >  7"2). The particles 
between the conductors are still virtual ones, and they would remain virtual 
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if this was the case for real black holes. Yet it is only the scattering aspect 
of the Scwarzschild gravitational field that entered our ideal model. The 
exchange of the nonrotating black hole potential barrier with two ideal 
conductors is merely an approximation. The real potential barrier of  a black 
hole forms a "bell" that lasts continuously from zero magnitude at the 
horizon up to zero at spatial infinity, passing through the maximum at 
r---3M. The reflecting properties (i) and (17)-(21) ensure that the barrier 
behaves as a real, and not an ideal, conductor, which conducts well at low 
frequencies, but as the frequencies increase, its conductivity diminishes. So, 
the Hawking radiation is "born"  inside the "bell" formed by a potential 
barrier of  a nonrotating black hole in all the region [2M, oo]. Its blackbody 
spectrum is due to the interaction of zero-rest-mass field fluctuations with 
the surface of the "bell." The flow is directed from the [2M, 3M]  region 
to [3M, ~ ]  tail of  the potential barrier. The particles between the walls of 
the bell are virtual ones. But they can become real after passing through 
the [3M, oo] tail, appearing to an observer at future infinity J+ as real ones, 
created by the accelerated tail of  the potential barrier. 

The comparison of  our results with those obtained by the usual and 
more laborious methods of quantum-field theory in curved spacetimes gives 
one confidence that the proposed picture does not differ significantly from 
the "real"  one. For instance, the situation at r = 3M with no flux corresponds 
to unstable photons that circle around the horizon of  a Schwarzchild black 
hole. 

DISCUSSION 

The following objections have been raised against the present point of 
view: 

1. "Since we can do the original calculation in curved space by usual 
methods of  quantum-field theory, what is the point of this approximation? 
It seems that this point of view contributes nothing new to the literature." 
(Anonymous referee.) 

2. "The author's attempt to localize the origin of Hawking quanta in 
space is seriously misconceived. As is well-known, the emitted particles 
have a wavelength comparable to the size of the black hole itself, and their 
point of origin cannot be specified to the accuracy discussed, any more 
than one can specify from which region within an atom a photon is emitted." 
(Anonymous referee.) 

3. "The use of a mirror by Davies to model an analogy to black hole 
differs crucially from the authors' use. Davies employed the mirror as a 
means of  modelling in one space dimension, the centre of  coordinates in 
a radially-symmetric three-dimensional system, to focus attention on the 
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fate of field modes that propagate through the centre of the collapsing star 
and out again. In the present paper it is the potential barrier outside the 
object which is being present as a "mirror." Indeed, the author even states 
[Nugayev, 1985, p. 96] 'the mathematics of Hawking's 1985 paper can be 
reinterpreted as describing the particle creation by a spherical barrier in 
fiat spacetime.' This seems to attribute the Hawking effect to the existence 
of the radial potential barrier rather than the collapse of the star. Such a 
picture clearly conflicts with the existence of the Hawking effect in two spacetime 
dimensions, where there is no radial potential barrier." (Anonymous referee.) 

4. The author "places great importance on the potential barrier at 
r =  3M. My impression from the study of the Rindler model is that the 
potential barrier does not play an essential role in the Hawking process, 
although of course it affects the details." (Private communication). 

5. "Second I don't  understand at all why you are inclined to represent 
the horizon also by a barrier (conducting or otherwise). This seems to have 
little physical justification." (Private communication). 

I am grateful for the above criticism: it helps to clarify my point of 
view. Nevertheless, these arguments miss the target, for the following 
reasons. 

1. The point would seem to be a weighty methodological (or philosophy 
of science) argument. It would be sound if I had merely proposed a theory 
of the evaporation process. But what is really described is not an isolated 
theory or a conjunction of theories. It is a series of theories characterized 
by a certain continuity which connects its members. This continuity evolves 
from a genuine scientific research program (SRP) adumbrated at the start. 
The SRP developed here aims to reduce the Hawking effect to quantum-field 
effects in fiat spacetime. It tries to fit reality by producing a sequence of 
ideal models (or simply theories) which describe the evaporation process 
with increasing precision. Each model is constructed on the basis of a certain 
"hard core" and with the help of "positive" and "negative" heuristics in 
accordance with the liberal standards of  the methodology of scientific 
research programs. The "hard core" consists of the basic assumptions, 
perhaps the basic view of  nature and its constituents, and necessary back- 
ground theories, which are accepted by scientists as unfalsified. A "positive 
heuristic" defines problems, outlines the construction of a set of auxiliary 
hypotheses, foresees anomalies, and turns them into examples, all according 
to a preconceived plan. A "negative heuristic" tells us what paths of research 
to avoid. 

By the methodology of  SRP the evolution of a program is judged in 
comparison with the evolution of its rivals, not by itself. A research program 
is called "progressive" if it makes predictions that are confirmed by sub- 
sequent research and thus leads to the discovery of novel facts. It is called 
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"s tagna t ing"  if it makes no such predict ions,  but  is reduced to absorbing  
material  that was discovered with the help of its rivals. The most impor tan t  

"object ive"  features offered by the methodology of SRP are progressive 
changes. To obta in  them one has to wait. Al though the methodology of 
SRP judges  the evolut ion of a program over a period of time, it does not  
judge  its aspect at a par t icular  time. 

Can there be any objective (as opposed to socio-psychological) reason to reject 
a programme, that is, to eliminate its hard core and its programme for constructing 
protective belts? Our answer, in outline, is that such an objective reason is 
provided by a rival research programme which explains the previous success of 
its rival and supersedes it by a further display of heuristic power. However, the 
criterion of "heuristic power" strongly depends on how we construe "factual 
novelty". Until now we have assumed that it is immediately ascertainable whether 
a new theory predicts a novel fact or not. But the novelty ofafactualproposit ion 
can frequently be seen only after a long period has elapsed. (Lakatos, 1970, p. 155) 

With regard to the general  methodological  quest ion,  consider  the fol- 

lowing statement:  

A new research programme which has just  entered the competition may start by 
explaining "old facts" in a novel way but may take a very long time before it is 
seen to produce "genuinely novel" facts. For instance, the kinetic theory of heat 
seemed to lag behind the results of the phenomenological theory for decades 
before it finally overtook it with the Einstein-Smoluchowski theory of Brownian 
motion in 1905. After this, what had previously seemed a speculative reinterpreta- 
tion of old facts (about heat, etc.) turned out to be a discovery of novel facts 
(about atoms). 

All this suggests that we must not discard a budding research programme 
simply because it has so far  failed to overtake a powerful rival We shouM not 
abandon it i f  supposing its rival were not there, it would constitute a progressive 
problemshift. And we should certainly regard a newly interpreted fact as a new 
fact, ignoring the insolent priority claims of amateur fact collectors. As long as 
a budding research programme can be rationally reconstructed as a progressive 
problemshift, it should be sheltered for a while from a powerful established 
rival. (Lakatos, 1970, p. 157) 

Now let us apply all this to black holes. The irrefutable hard core of 
our  program consists in the assert ion that  the effect of  black-hole evapora t ion  
can be unders tood  with the help of quantum-f ie ld  effects in Minkowski  
spacetime. Its "posi t ive heurist ic"  should consist  of  a set of  auxil iary 
hypotheses which define the impor tan t  problems and  install a sequence of 
models that describe the Hawking process with increasing precision.  The 
positive heurist ic of our  program consists in the fol lowing assertion: To 
unde r s t and  the process of  particle creat ion by a black hole, we must  replace 
its gravi tat ional  field by a real conductor .  The conduc tor  form is de te rmined  
by a par t icular  model.  
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The first ideal model of the p r o g r a m - - a  pair of plane conductors at 
rest near the horizon of nonrotating black hole- -he lped  to demonstrate that 
the negative flow of the Casimir energy should cause the area of  the horizon 
to shrink at a rate consistent with the energy flux observed at future infinity. 
Thus, the first model helped to reinterpret the well-known peculiarity of  
the Hawking effect in a new way. According to the criteria already men- 
tioned, we should certainly regard a newly interpreted fact as a new fact. 

However, the primary model appeared to be too primitive, since it 
provided only qualitative agreement with Hawking's  result. Hence, the 
second stage of the program had to be realized. It consisted in the construc- 
tion of a more sophisticated model capable of  demonstrating that the mere 
existence of a spherical barrier and of the horizon is sufficient to compel 
the black hole to produce thermal radiation of a temperature that exactly 
coincides with the results of  Hawking (Nugayev, 1982). Hence, the next 
"new fact" was discovered and we can judge the transition from the first 
ideal model M 1 to the second M2 as a "progressive" one. 

But even the second ideal model M2 appeared to be too primitive to 
provide a satisfactory description, since the vacuum stress tensor diverged 
in the reference frame of a freely falling observer as r ~  2M. The pathology 
of the second model is due to assumption of ideal conductivity, which is 
obviously not the case for the spherical potential barrier of  a black hole. 
So, a third stage of the program had to be realized and the potential-barrier 
finite conductivity term taken into account (Nugayev, 1985). M 3 helped to 
reveal that particles are "created" in the [3M, oo] region. 

However, even the third ideal model M3 was able to describe the 
creation domain only, but not the mechanism of black hole evaporation. 
The cause is obvious: M 3 ignores the potential barrier thickness. Earlier, 
the barrier was approximated by a thin shell, but Fabbri demonstrated that 
there exist two branches of  turning points for the barrier. Consequently, 
for the purpose of investigating the interaction of virtual particles with the 
surface of the potential barrier, a fourth ideal model M 4 had to be construc- 
ted. It had to represent the potential barrier by two conducting concentric 
shells. One of the shells is situated near the horizon, while the other is far 
way from it. Model M 4  gave a more accurate description of the evaporation 
mechanism. 

Thus, we can claim that none of the Mi-~ Mk transitions (i < k, i, k = 
1, 2, 3, 4) was ad hoc. In general, all the more or less vague charges of  "ad 
hocness" fall under the following categories used in appraising SRP 
(Zamar, 1973). 

"Ad-hocness in research programmes is defined not as a property of an isolated 
hypothesis but as a relation between two consecutive theories. A theory is said 
to be ad hoc 1 if it has no novel consequences as compared with its predecessor. 
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It is ad hoc  2 if none of its novel predictions have been actually "verified," for 
one reason or another the experiment in question may not have been carried 
out, or--much worse--an experiment devised to test a novel prediction may 
have yielded a negative result. Finally the theory is said to be ad hoc 3 if it is 
obtained from its predecessor through a modification of the auxiliary hypotheses 
which does not accord with the spirit of the heuristic of the programme." 

Now, none of the Mi-~ Mk transitions can be evaluated as ad hoc~ or 
ad hoc3 ,  though all of them can be judged as ad hoc2. Yet, this is not an 
obstacle for realizing the program, since all the transitions within its rival 
("usual" or "ordinary" quantum field theory in curved spacetime) are ad 
hoc2 also. Up to M~ our program development is characterized by reinterpre- 
tation of  already known facts. And, as noted earlier, "it may take a very 
long time before it is seen to produce 'genuinely novel facts'." 

2. The particles are "created" in all the region [3M, ~] .  They are 
"born" within the potential barrier inside the "bell" with the maximum at 
r=3M.  Since the bell's dimensions vary from d = 0  at r = 3 M  to d =  
[2M, oo], the wavelengths of  the emitted particles vary from A -- 0 at r = 3M 
to A = oo. Though the point of origin of the particles with A -  M cannot be 
specified exactly, the particles with A -  0 are "created" in the vicinity of 
r=3M.  

3. It is the joint existence of  the potential barrier together with the 
horizon that enables the hole to evaporate. The role of the barrier is as 
crucial for the occurrence of radiation as the role of the horizon. And "the 
existence of the Hawking effect in two spacetime dimensions, where there 
is no radial potential barrier," is not an argument against the program 
developed, for the following reasons. 

First, the necessity of the potential barrier for Hawking emission is 
supported by Wald's (1977) five axioms. In the absence of any experimental 
or observational verifications, Wald's conditions are the only available 
criteria for deciding whether any given renormalization scheme of the 
vacuum stress tensor is likely to be correct. Of the five postulates, the last 
one is one of special importance for us: 

Axiom 5. Consider a sequence {(g,~)n} of  C ~ spacetime metrics that 
agree outside a fixed compact region and are such that the components of 
(g,~)n and the derivatives of these components up to fourth order (in a 
fixed chart) converge uniformly to a C ~ metric g,v and its derivatives up 
to fourth order, respectively. Then we require that for fixed "in" or "out"  
state {(T,~),} and its derivative up to third order converge (pointwise) to 
(T~) and its derivatives up to third order, respectively. 

This axiom is a precise mathematical condition, which expresses the 
intuitive notion that the stress energy contains no "local curvature term." 
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This term, depend ing  on second-order  or higher derivatives of the metric 
components ,  would  not  vary cont inuous ly  with the metric in the m a n n e r  
required by the fifth axiom. This was shown by Wald with the help of the 

following heuristic remarks. 

It is well known that in a fixed chart one can view the vacuum Einstein equation 
G~,~ = 0 as a second order hyperbolic system of equations for the components 
of the metric. Consider, now, the Einstein Equation with the classical stress- 
energy tensor T~,~ of some field acting as a source. If we fix initial data for the 
field on some Cauchy surface, we can veiw the field and hence this classical. 
T~,~ as a (nonlocal) functional of the space time metric. Suppose, however, that 
this nonlocal functional were to include a "local curvature piece" i.e. a term 
whose value at a point p depends on derivatives of the metric components high 
than first order at p, e.g:, a fourth order term like V~V~R where R is a scalar 
curvature. In that case, the character of the dynamical evolution of Einstein's 
equation with source would be entirely different than that of Einstein's equation 
in vacuum. In the example just quoted, the evolution would have the character 
of a fourth-order system V~V~R = - G ~ +  (nonlocal part of T~) rather than 
that of the second order system. (Wald, 1977, p. 9) 

According to the cor respondence  principle,  we want  the semiclassical 
theory (G,~ = (T~)vao) to reduce to general  relativity in the classical limit. 

However,  if the q u a n t u m  energy stress tensor  does not  satisfy Axiom 5, this 

is impossible.  
Wald  appl ied his fifth postulate  to the so-called "conformal  anomaly  ''3 

and  arrived at the fol lowing results. In  two-d imens iona l  model  spacetimes 

studied by Davies et al. and  others, one can have a conformal ly  fiat 
space t ime- -a l l  two-d imens iona l  spacetimes are conformal ly  f l a t - -which  is 
flat outside a compact  region and yet has the proper ty  that particles of a 
conformal ly  invar iant  field are created. This implies that the q u a n t u m  
stress-energy tensor  canno t  be conformal ly  invar iant ,  even though the 
classical stress-energy tensor  is conformal ly  invariant .  Since the tracelessness 
of the classical stress energy can be viewed as a consequence  of its conformal  
invariance,  it is not  surpris ing that the q u a n t u m  stress energy should lose 

its tracelessness as well, as Davies et al. found.  However,  it is not  at all 

clear that similar behavior  should occur in four -d imens iona l  spacetimes. It 
is well known  that two-dimensional manifolds have anomalous conformal 
properties, and  the above p h e n o m e n o n  may merely be a reflection of this 
fact. In part icular ,  it is not  difficult to show that in four d imens ions  no 
particle p roduc t ion  can occur for a conformal ly  invar iant  field in a confor-  
mally invar ian t  spacetime that is flat outside a compact  region. Due to this 
argument ,  Wald arrives at the following rather careful conclusion.  "Thus,  

the type of  particle creation effect which occurs in two dimensions and strongly 

3 This term refers to the claim that the trace of the quantum stress-energy tensor of a conformally 
invariant field may be nonzero, though the trace of the classical stress energy vanishes 
identically. 
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suggests a conformal anomaly in the trace of  the stress energy does not occur 
in 4-dimensions" (Wald, 1977, p. 10). Hence, until there is a special investiga- 
tion and comparison of  particle creation in four and two dimensions, 
argument 3 against our standpoint is not valid. 

Moreover, the careful study of the two-dimensional particle creation 
reveals the following fascinating detail. Unruh's (1976) study of the collapse 
of  a spherical shell of matter to a black hole in a two-dimensional model, 
where "the field equations for massless fields are exactly solvable," contains 
the following important confession: "In two dimensions, the centrifugal 
barrier which prevents any particle flow through r = 0 is absent. In order to 
mimic the effect of  such a barrier. I demand that there be no net radial flux 
at r = 0" (Unruh, 1976, p. 872). 

4. The potential barrier does play an essential role in the Hawking 
process. 

First, it is the occurrence of the potential barrier that demarcates the 
general relativistic description of the black hole from the Newtonian one 
(see, for instance, Zel'dovich and Novikov, 1973). But does the effect of 
particle creation by a black hole occur in Newton's theory of gravity, where 
the naked horizon is not hidden under the potential barrier? 

Second, all the mathematics of Hawking's (1975) classic paper can be 
interpreted as describing particle creation by a spherical barrier in a flat 
spacetime with a horizon [see pp. 96-97 of Nugayev (1985) for details]. 
Hence, it is quite understandable why Hawking's final result does not 
depend on the details of the collapse. 

Third, "indeed, it might be said that Hawking (1975) solved the problem 
of  a black hole by approximating it by a two-dimensional moving mirror" 
(Davies and Fulling, 1977, p. 34). 

5. In our treatment the horizon with its one-sided membrane properties 
is left unchanged. It is not represented by any barrier (conducting or 
otherwise). One of the conductors of the M5 model, for example, is situated 
in the vicinity of the horizon only. Of course, the presence of the horizon 
should influence the vacuum polarization picture and change the Casimir 
energy. It cannot change the sign of the energy, as a consideration of the 
collapse process from the very beginning indicates [see Nugayev and Bash- 
kov (1979) for details]. But of  course, the formula 

T oo = -~.2hc2/720d 4 

with d ~ 3 M + 3 M  = 6M, which describes the vacuum stress-energy inside 
the [0, 3M] region, should be exchanged for a better one even in the 
[2M, 3M] domain. But the question of how the influence of the horizon 
should be taken into account remains a problem for the present program 
that should be solved in the future. 
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